CSE525 Lec2:2 Approximation algo

Debajyoti Bera (M21)

Non-decision problems

For NP-completeness, need decision problems.
Problems that are not decision problems can be ..

- Function problems (Find a colouring of a graph using at most 3 colours)
- Counting problems (Count the number of 3-colourings of a graph)
- Optimization problems (Optimize the number of colours needed to colour a graph)

How to deal with optimisation versions of $N P$-complete decision problems? \rightarrow algorithms are probabilistic, $A(x) \rightarrow$ random, correct wp $\geqslant 99 \%$ \longrightarrow algorithms return sightly
inaccurate results approximation algorithms

Approximation Ratio

APPROX = solution of approximate algorithm, OPT = optimal solution
Approx. aldo is r-relative if ...
2-approp. algorithm forknapsack APPROX $\in\left[\frac{\text { OPT }}{2}, \ldots\right.$, OP $\left.\tau\right]$

- Maximization problem:
- Minimization problem:

Approx. aldo has r-absolute if ...

$$
\begin{aligned}
& \frac{O P T}{\gamma} \leqslant \text { APPROX } \leqslant O P T \equiv \text { APPROX } \leqslant O P T \leqslant r \cdot \text { APPROX } \\
& O P T \leqslant A P P R O X \leqslant r \cdot O P T \equiv \frac{\text { APPROX }}{2} \leqslant O P T \leqslant \text { APPROX }
\end{aligned}
$$

- Maximization problem:
- Minimization problem:

$$
\begin{aligned}
O P T-r & \leqslant A P P R O X \leqslant O P T \\
O P T & \leqslant A P P R O X \leqslant O P T+r
\end{aligned}
$$

Approx VC $\leqslant 2 *$ OPT \rightarrow Approx \leqslant f(\#e ger)
$\rightarrow O P T \geqslant f($ fledge $)$

Minimum Vertex Cover

Given G. find a vertex cover with the smallest size Approx $V C \leqslant 2 \times$ OrTVC $\mapsto 2(\sqrt{d})($ prox. Edo in E ido not

1. Pick an edge (u, v)

2. Add one of u or v to VC [based on some]
3. Remove adjacent edges from adtanded node 4. Koto l. O(E.V) 4. Koto l. O(E.V) 1. Pick an edge (u,v) share avevex 2. Add both $u \& v$ to VC
4. Remove all adjacent edges from u \& v
5. Goto 1. O(EV)

the size of
Q: Consider 2nd Algo and denote its output as ApproxVC.. Show that in OptVC (optimum vertex cover) at least ApproxVC/2 vertices must be present.

Algorithmic obs. Approx VC $=2 \times\left|E^{\prime}\right|$
Q: Does ApproxVC return a VC? What is its (relative) approximation ratio?

$$
\begin{aligned}
& \text { proximation ratio? } \\
& \text { Trinal of e } \\
& \rightarrow \text { OPT } \geqslant\left|E^{\prime}\right|
\end{aligned}
$$

Fact: VC can be approximated but not to a high quality. Graph thenetic \Rightarrow APproxVC

- Dinur Safra 2002: VC cannot be approximated to any constant $\leqslant 1.36 \leqslant 2 y$ of PV
- Knot Regev 2003: VC cannot* be approximated to any constant $z=2$!!!

Chromatic number (CHR)

aleady
Chromatic number of $G=$ optimal number of collours
Polynomial-time algorithm is unlikely.
What about polynomial-time algorithms returning "ad-hoc" solutions?
Col 1 cat $2 \cdots \operatorname{coln}_{n}$
Greedy Algorithm (G): Colour greedily all vertices in some order. Number of colours? V1: we col 1 . for every vatep V2.v3.. Un, colour vi using the smallest possible colour
Trivial Algorithm (G): Colour every vertex using different colour. Number of colours? $|v|$
Which algorithm is better ? How to evaluate quality ?

$$
\text { Claim: col }\left(v_{i}\right) \leqslant \operatorname{colk}
$$

Greedy Algorithm for CHR

 C_{k}
 almost $C_{1} \cdots C_{n-1}$ have beencesed.

 Greedy (G):$\therefore C_{k}$ is a valid colourfavk

Order vertices in any order: vil v2 ... Greedily assign colours from $[c 1, c 2, \ldots]$ to every vi in that ord $\mathrm{cl} \mathrm{ch}^{\mathrm{cs}} \mathrm{ch} / \mathrm{cs}$
theashone wisd not be used

What can be said about output of Greedy (G)?
Q: Show that colour of $\mathrm{vi}<=\min \{\operatorname{deg}(\mathrm{vi})+1, \mathrm{i}\} \longleftarrow$ Q: Give an upper bound on the number of colours? n velez, Δ : max degree $\Delta+1$
Q: Show a graph and ordering for which this performs badly Q: Form a strategy (ordering) to colour using few colours.

$$
\begin{array}{r}
10050178624333221111 \mathrm{CHR}\left(G_{9}\right) \leqslant 2 \\
\text { Greedy }(G)=4
\end{array}
$$

Cain: $\cot \left(v_{i}\right) \leqslant \operatorname{deg}\left(v_{i}\right)$
$N=$ neighbours of V_{i}
$|N|=\operatorname{deg}\left(v_{i}\right)$
Almost $|N|$ colours are \therefore used to colour r N. $\therefore(N+1)$ is a valid colour
indict by vales in N .
if C AR $(G) \leqslant k: ~ k \leq \mathbb{C H}+R$ Afgo $(G) \leqslant k+15$
1-absolute CHR is not easy cktlo cannor dacice det Is CHR (G, k) :
Create Hintue manner
Polytime CHRAlgo(G) : Output either CHR(G) or CHR(G) $+1 / / \mathrm{cHR}(\mathrm{H})=2 \star \mathrm{CHR}(\mathrm{G})$
Q: Reduce IsCHR to CHRAlgo IsCHR(G,k)="Is chrom. num. $<=\mathrm{k}$? $\gamma<$ eHR Ago(H)
Q: Reduce(IsCHR to)CHRAlgo IsCHR(G,k) = "Is chrom. num. <= k?"

$C+R(G)>k t l: \quad k+1 \leqslant \operatorname{ctr} \operatorname{Afo}(G)$

IsCHR(G,k): Decide which case is true?

(a) $\operatorname{CHR}(G)<=k \operatorname{ORCHR}(G)>=k+1 @$

$$
r=\operatorname{cHRC}(H))^{a}
$$ $\operatorname{ctH}(H)+1$ CHk(tA) इ2k $C A R(H) \geqslant 2 k+2 \quad r \geqslant 2 k+2 * 2 x \operatorname{ctHR}(G)+1$

$\operatorname{CHR}(\mathrm{G})<=\mathrm{k} \operatorname{OR} \operatorname{CHR}(\mathrm{G})>=\mathrm{k}+1 \quad \operatorname{IFF} \quad \operatorname{CHR}\left(\mathrm{G}^{\prime}\right)<=$??? $\operatorname{OR} \operatorname{CHR}\left(\mathrm{G}^{\prime}\right)>=$??? Batend: r abobute appre is not IFF CHRAlgo $\left(\mathrm{G}^{\prime}\right)<=$?? OR CHRAlgo(G') $>=$??

